Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes.

نویسندگان

  • Kelly M Regula
  • Delphine Baetz
  • Lorrie A Kirshenbaum
چکیده

BACKGROUND Oxygen deprivation for prolonged periods of time provokes cardiac cell death and ventricular dysfunction. Preventing inappropriate cardiac cell death in patients with ischemic heart disease would be of significant therapeutic value as a means to improve ventricular performance. In the present study, we wished to ascertain whether activation of the cellular factor nuclear factor (NF)-kappaB suppresses mitochondrial defects and cell death of ventricular myocytes during hypoxic injury. METHODS AND RESULTS In contrast to normoxic control cells, ventricular myocytes subjected to hypoxia displayed a 9.1-fold increase (P<0.05) in cell death, as determined by Hoechst 33258 nuclear staining and vital dyes. Mitochondrial defects consistent with permeability transition pore opening, loss of mitochondrial membrane potential (DeltaPsim), and Smac release were observed in cells subjected to hypoxia. An increase in postmitochondrial caspase 9 and caspase 3 activity was observed in hypoxic myocytes. Adenovirus-mediated delivery of wild-type IKKbeta (IKKbetawt) resulted in a significant increase in NF-kappaB-dependent DNA binding and gene transcription in ventricular myocytes. Interestingly, subcellular fractionation of myocytes revealed that the p65 subunit of NF-kappaB was localized to mitochondria. Hypoxia-induced mitochondrial defects and cell death were suppressed in cells expressing IKKbetawt but not in cells expressing the kinase-defective IKKbeta mutant. CONCLUSIONS To the best of our knowledge, the data provide the first direct evidence that activation of the NF-kappaB signaling pathways is sufficient to suppress cell death of ventricular myocytes during hypoxia. Moreover, our data further suggest that NF-kappaB averts cell death through a mechanism that prevents perturbations to the mitochondrion during hypoxic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear factor-kappaB-mediated cell survival involves transcriptional silencing of the mitochondrial death gene BNIP3 in ventricular myocytes.

BACKGROUND A survival role for the transcription factor nuclear factor-kappaB (NF-kappaB) in ventricular myocytes has been reported; however, the underlying mechanism is undefined. In this report we provide new mechanistic evidence that survival signals conferred by NF-kappaB impinge on the hypoxia-inducible death factor BNIP3. METHODS AND RESULTS Activation of the NF-kappaB signaling pathway...

متن کامل

Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes.

In this study, we provide evidence for the operation of BNIP3 as a key regulator of mitochondrial function and cell death of ventricular myocytes during hypoxia. In contrast to normoxic cells, a 5.6-fold increase (P<0.05) in myocyte death was observed in cells subjected to hypoxia. Moreover, a significant increase in BNIP3 expression was detected in postnatal ventricular myocytes and adult rat ...

متن کامل

Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death.

Hypoxia is a prominent feature of solid tumor development and is known to stimulate mitochondrial ROS (mROS), which, in turn, can activate hypoxia-inducible transcription factor-1alpha and nuclear factor-kappaB (NF-kappaB). Because NF-kappaB plays a central role in carcinogenesis, we examined the mechanism of mROS-mediated NF-kappaB activation and the fate of cancer cells during hypoxia after m...

متن کامل

A novel hypoxia-inducible spliced variant of mitochondrial death gene Bnip3 promotes survival of ventricular myocytes.

RATIONALE Alternative splicing provides a versatile mechanism by which cells generate proteins with different or even antagonistic properties. Previously, we established hypoxia-inducible death factor Bnip3 as a critical component of the intrinsic death pathway. OBJECTIVE To investigate alternative splicing of Bnip3 pre-mRNA in postnatal ventricular myocytes during hypoxia. METHODS AND RESU...

متن کامل

The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes.

The cell cycle factor E2F-1 is known to regulate a variety of cellular processes including apoptosis. Previously we showed that disruption of Rb-E2F-1 complexes provoked apoptosis of postmitotic adult and neonatal ventricular myocytes; however, the underlying mechanism was undetermined. In this report, we show that E2F-1 provokes cell death of ventricular myocytes through a mechanism that direc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 110 25  شماره 

صفحات  -

تاریخ انتشار 2004